
Online Prediction of Exponential Decay Time Series with
Human-Agent Application

Ariel Rosenfeld1, Joseph Keshet2, Claudia V. Goldman3, Sarit Kraus4

Abstract. Exponential decay time series are prominent in many
fields. In some applications, the time series behavior can change over
time due to a change in the user’s preferences or a change of envi-
ronment. In this paper we present an innovative online learning algo-
rithm, which we name Exponentron, for the prediction of exponential
decay time series. We state a regret bound for our setting, which the-
oretically compares the performance of our online algorithm relative
to the performance of the best batch prediction mechanism, which
can be chosen in hindsight from a class of hypotheses after observing
the entire time series. In experiments with synthetic and real-world
data sets, we found that the proposed algorithm compares favorably
with the classic time series prediction methods by providing up to
41% improvement in prediction accuracy. Furthermore, we used the
proposed algorithm for the design of a novel automated agent for the
improvement of the communication process between a driver and
its automotive climate control system. Throughout extensive human
study with 24 drivers we show that our agent improves the commu-
nication process and increases drivers’ satisfaction, exemplifying the
Exponentron’s applicative benefit.

1 Introduction

Exponential decay functions are popular in modeling real-world phe-
nomena. For example, the decrease in radioactivity levels of radioac-
tive substances, the cooling of an object in a cold environment [24]
and human decline of memory retention over time [13] are all as-
sumed to decay exponentially over time, and are usually modeled
using exponential decay functions.

There are several learning algorithms for the prediction of expo-
nential decay time series such as the Bayesian [6], regressive [12] or
autoregressive [9] methods based on labeled training data (i.e, set of
observed time series). However, most of these algorithms introduce
two limitations: First, the algorithms are batch in nature and need to
get the whole training set in advance. As such, batch algorithms can-
not adapt to changes over time in the modeled phenomenon which
may occur after the initial training phase, for example when model-
ing human preferences over time. Second, the algorithms are general
purpose, and do not exploit the exponential decay nature of the time
series. While a few online learning versions of the above models have
been investigated recently [20], to the best of our knowledge none
have specifically addressed exponential decay time series.

In this paper we present an online learning algorithm, which we
call Exponentron, for the prediction of exponential decay time series.

1 Bar Ilan University, Israel, email: arielros1@gmail.com
2 Bar Ilan University, Israel.
3 General Motors Advanced Technical Center, Herzliya, Israel.
4 Bar Ilan University, Israel.

The online learning algorithm takes place in a sequence of consec-
utive rounds. In each round, the learner first receives a time series
instance. Then, the learner is required to predict its parameters. At
the end of the round, the learner obtains the correct parameters, and
uses this information to improve its future predictions.

The Exponentron algorithm focuses on a special hypothesis fam-
ily capturing the assumed exponential decay behavior of time series.
It is aimed at optimizing the square loss function, and like other on-
line learning algorithms it does not require any training data before
deployment.

We state a regret bound for the Exponentron algorithm. Regret
bounds are common in the analysis of online learning algorithms. A
regret bound measures the performance of an online algorithm rela-
tive to the performance of the best competing hypothesis, which can
be chosen in hindsight from a class of hypotheses, after observing
the entire time series.

Empirically, we show that the algorithm significantly outperforms
classic time series prediction methods’ accuracy in predicting as-
sumed exponential decay time series in two repeated real-world set-
tings by up to 41%. Exponentron is then used for the enhancement of
driver-automotive climate control system (CCS) interaction. A novel
intelligent agent for Natural Interaction with humans in CCS using
the Exponentron algorithm, which we named the NICE agent, is pre-
sented. The NICE agent was extensively evaluated with 24 human
drivers in hot summer conditions. The agent successfully reduced
the number of interactions needed by the driver to achieve her de-
sired comfort state by 19% compared to state-of-the-art CCSs. The
agent is also shown to achieve high driver satisfaction.

This paper makes the following contributions; (1) We propose a
novel online learning algorithm, named Exponentron, for the predic-
tion of exponential decay time series. The algorithm is the first of
its kind as it is tailored to a unique class of time series. We provide
both theoretical analysis and empirical evaluation of the algorithm.
(2) We present a novel intelligent agent, named the NICE agent, that
provides the driver with intelligent, natural interface with which she
can change the parameters of her automotive climate control system
(CCS). The agent reduces the driver’s need for interaction with the
CCS, and increases the driver’s subjective satisfaction.

2 Time Series Preliminaries

A time series s = (s0, s1, . . . , sT ) is an ordered sequence of values
measured in equally spaced time intervals, where st ∈ R denotes
an element at time t, 0 ≤ t ≤ T . In this work, we assume that the
time series was created by an exponential decay process. Assuming
(s0, s1, . . . , st−1) is the beginning of a series, the prediction of the
next element is denoted ŝt.



Intelligent agents often use time series prediction to improve their
decision-making. A few recent examples include the repositioning
of bikes in bike-sharing systems based on the prediction of bike us-
age [25], maintenance scheduling based on the prediction of ongoing
game scores [31] and the prediction of passenger demand for better
taxi routing [22]. A common theme among these systems is the use
of classical, general purpose time series prediction methods as the
basis for their domain-specific proposed approach and design.

Among the most commonly applied techniques for forecasting the
continuation of a time series given its beginning are the autoregres-
sive (AR) model, the autoregressive-moving average (ARMA) model
(see [9] for a review) and the exponential smoothing (ES) forecasting
method (see [15] for a review).

The autoregressive (AR) model generates its prediction using the
following equation:

ŝt = c+

p∑
i=1

ϕist−i (1)

where c, p and ϕi are parameters of the model.
An AR model is in fact a linear regression of the current value of

the time series against one or more prior values of the time series. The
value of p is called the order of the AR model. The most commonly
applied AR method, which is also used in this study, uses p = 1.
This model is sometimes denoted AR(1).

A popular extension of the AR model uses a moving aver-
age (MA), resulting in the autoregressive-moving average (ARMA)
model [9]. ARMA is also known as the Box-Jenkins Approach. The
ARMA model generates its prediction using the following equation:

ŝt = c+

p∑
i=1

ϕist−i +

q∑
i=1

θiet−i. (2)

where ej = sj − ŝj and c, p, q, ϕi, θi are parameters of the model.
AnARMAmodel is in fact a linear regression of the current value

of the time series against one or more prior values of the time series
and one or more prior noise terms. The value of p is called the order
of the AR part of the model and q is the order of the MA part of the
model. The most commonly applied ARMA method, which is also
used in this study, uses p = q = 1. This model is sometimes denoted
ARMA(1, 1).

Another prediction method is the exponential smoothing (ES)
scheme (also known as the exponentially weighted moving average),
which weighs past elements of the time series using exponentially de-
creasing weights. The most suitable exponential smoothing method,
which is used in this study, is the double exponential smoothing
method, denoted ES. ES forecasts the continuation of a time series
using the following equations:

ŝt = αst−1 + (1− α)(ŝt−1 + bt)

bt = γ(ŝt − ŝt−1) + (1− γ)bt−1

(3)

where 0 < α ≤ 1 and 0 < γ ≤ 1.
There are several methods for choosing ŝ0 and b0. The most com-

mon one, which is also used in this study, is ŝ0 = s0 and b0 = 0.
Note that single exponential smoothing does not fit time series which
present trends, and therefore is unsuitable for this study. Triple ex-
ponential smoothing, also known as the Holt-Winters exponential
smoothing technique [16], is popular in forecasting seasonal time
series. In our settings we assume no seasonality. The smoothing pa-
rameters, α and γ, used by the ES method are usually found using
grid search.

Note that the above three methods are both general purpose (that
is, they can fit a large variety of time series) and work batch (the
models’ parameters do not change during the prediction).

An online version of the ARMA model, denoted O-ARMA was
recently analyzed in [1]. The proposed version uses the ARMA
model specified in Equation 2, yet the model’s parameters may
change over time. Nevertheless, note that this method is still general
purpose, as is the basic ARMA model.

In this work we provide a solution to the task of online predicting
the continuation of an assumed exponential decay time series. To
the best of our knowledge, no intelligent system or machine learning
algorithm has addressed this challenged to date.

The above four models (AR, ARMA, ES and O-ARMA) are
evaluated as baseline models in Section 4 of this study, showing the
Exponentron algorithm’s superiority.

3 The Exponentron Algorithm
We assume the following set of hypotheses:

ŝt(θ) = a+ b e−c (t−t0), (4)

where θ = (a, b, c) is the set of 3 parameters that should be esti-
mated, θ ∈ R3

+, and t0 ∈ R+ is a time offset parameter.
In this work we focus on the online settings, where learning

takes place in rounds. In round t, the algorithm observes the series
(s0, s1, . . . , st−1) and is required to make a prediction for the next
element in the series, ŝt. The algorithm maintains a set of param-
eters that are updated every round. After making its prediction, ŝt,
the correct value, st, is revealed and an instantaneous loss `(ŝt, st)
is encountered. The round ends with an update of the parameters θ
according to the encountered loss. In this work we use the squared
loss function, namely

`(ŝt(θ), st) = (ŝt(θ)− st)2 = (a+ b e−c (t−t0) − st)2. (5)

Our algorithm, which is called Exponentron, is given in Algo-
rithm 1. The algorithm is aimed at minimizing the cumulative loss.

The algorithm starts with a set of feasible parameters θ0 ∈ R3
+,

that is, θ0 = (a0, b0, c0) satisfies the constraints on the parameters.
We initialize t0 by setting the first prediction to be correct, namely,
ŝt = st for t = 0, and get

t0 = log((s0 − a)/b)/c. (6)

Now the set of parameters needs to satisfy the constraints a ≤ s0,
b ≥ 0 and c ≥ 0.

The following proposition states that the hypothesis function is a
convex function.

Proposition 1. The hypothesis function

ŝt(θ) = a+ b e−c (t−t0) (7)

is a convex function in the set of parameters θ = (a, b, c).

Proof. Since b > 0 we can rewrite it as b = eb̃, and the hypothesis
becomes ŝt(θ) = a+ eb̃−c (t−t0). Now it is easy to verify that

ŝt(αθ1 + (1− α)θ2) ≤ αŝt(θ1) + (1− α)ŝt(θ2),

for the sets θ1 = (a1, b̃1, c1), and θ2 = (a2, b̃2, c2) which satisfy
the constraints, and α ∈ (0, 1).



Since our loss function in Eq. (5) is also a convex function, it turns
out that the loss is convex.

Our algorithm is based on gradient projected methods [7, pp. 228].
The algorithm starts with a set of feasible parameters θ0 ∈ R3

+,
that is, θ0 satisfies the constraints. At the t-th round the algorithm
predicts the next element in the time series based on the parameters
θt−1. Then, if the encountered loss, `(ŝt(θt−1), st), is greater than
zero, the parameters are updated by a gradient step: θ′ = θt−1 +
ηt∇θ`, where the gradient of the loss is the following vector:

∇t = 2(ŝt(θ)− st)[1, e−c (t−t0),−b(t− t0)e−c (t−t0)]. (8)

The parameter ηt is the learning rate. Specifically in our case we set
ηt = η0/

√
t, where η0 is chosen when the algorithm starts (as in

[33, 8]).
At the end of each round the algorithm projects θ′ on a set of

constraints in order to get θt, a feasible vector.

Algorithm 1 The Exponentron Algorithm

Require: initialize θ0, learning parameter η.
1: observe s0 and set t0 according to Eq. (6)
2: for t = 1, 2, . . . , T do
3: predict ŝt = at−1 + bt−1 e

−ct−1 (t−t0)

4: observe true value st
5: encounter loss `(ŝt, st)
6: update parameters and project
7: at = min{s0, at−1 − 2ηt(ŝt − st)}
8: bt = max{0, bt−1 − 2ηt(ŝt − st)e−ct−1 (t−t0)}
9: ct = max{0, ct−1 + 2ηt(ŝt − st)bt−1

(t− t0)e−ct−1 (t−t0)}

Note that the Exponentron algorithm does not require any training
before deployment.

Often the performance of an online algorithm is measured by how
competitive it is with the hypothesis of the best fixed parameters θ∗.
This is captured by the notion of the algorithm’s regret, which is
defined as the excess loss for not consistently predicting with the
parameters θ∗,

regret(θ∗, T ) ,
T∑

t=1

`(ŝt−1(θ), st)−
T∑

t=1

`(ŝt(θ
∗), st). (9)

The following theorem states that the regret of the Exponentron al-
gorithm is bounded.

Theorem 2. The Exponentron algorithm has the following regret
bound for every θ∗ in R3

+,

regret(θ∗, T ) ≤
√
T

2
‖θ‖2 +

1

2
√
T

T∑
t=1

‖∇t‖2. (10)

Proof. The analysis is based on the stochastic gradient descent with
projection analysis [7]. Denote by θt−1 the set of parameters before
the update, by θt−1/2 the set of parameters after the gradient step,

and by θt the set of parameters after the projection step. We have

‖θt − θ∗‖2 − ‖θt−1 − θ∗‖2

= ‖θt − θ∗‖2 − ‖θt−1/2 − θ∗‖2

+ ‖θt−1/2 − θ∗‖2 − ‖θt−1 − θ∗‖2

≤ ‖θt−1/2 − θ∗‖2 − ‖θt−1 − θ∗‖2

= ‖θt−1 − η∇t − θ∗‖2 − ‖θt−1 − θ∗‖2

= −2η (θt−1 − θ∗) · ∇t + η2‖∇t‖2

≤ −2η
(
`(ŝt(θt−1), st)− `(ŝt(θ∗), st)

)
+ η2‖∇t‖2

From the second line to the third line we used the property of projec-
tions, ‖θt − θ∗‖2 ≤ ‖θt−1/2 − θ∗‖2. We now sum over all t, and
get

‖θT − θ∗‖2 − ‖θ0 − θ∗‖2

≤ −2η

T∑
t=1

(
`(ŝt(θt−1), st)− `(ŝt(θ∗), st)

)
+

1

2
η

T∑
t=1

‖∇t‖2

By rearranging terms we get the desired result.

4 Exponentron Evaluation
We first evaluate the Exponentron algorithm using synthetic expo-
nential decay time series. Then, we evaluate the Exponentron algo-
rithm in two real-world prediction tasks of significant importance:
First, we evaluate the Exponentron in predicting drivers’ desired in-
terior cabin temperature during a drive. Specifically, we focus on the
cooling condition, where a driver wishes to cool the interior cabin
temperature of a car in order to achieve a comfortable state. Sec-
ond, we wish to predict the number of arriving calls at a call center.
Specifically, we consider a call center in which human service agents
can handle both inbound calls and other back-office tasks, making
the prediction of arriving calls an important factor in real-time work
schedule adjustment and managerial decision-making [14].

We compare Exponentron against 4 time series prediction meth-
ods, AR,ARMA,ES and O-ARMA which are described in Sec-
tion 2.

4.1 Synthetic Data Prediction
To gain intuition about the relative strengths of the Exponentron algo-
rithm, we evaluate the Exponentron in a synthetic exponential decay
time series prediction task.

To this end, we synthetically generated 1,000 exponential decay
time series, which all start at the value 100 at t = 0, denoted
s0 = 100. Each time series is represented as a tuple θ = (a, b, c) and
is generated according to Equations 4 and 6; st(θ) = a+b e−c (t−t0)

where t0 = log((s0 − a)/b)/c. We synthetically generated the
time series by sampling a ∈ U [10, 80], b ∈ U [20, 90] and c ∈
U [0.1, 0.5].5 We then randomly assigned 900 time series to a train-
ing set and the remaining 100 time series were assigned to the test
set. The training set time series are used to train the Exponentron al-
gorithm, alongside the four baseline models described in Section 2.
The coefficients used by the AR and ARMA methods were learned
using a simple linear regression over the training set time series.

5 a, b and c were chosen as such to allow a significant range of possible
hypotheses and yet restrict the range to allow a reasonable first estimation
of a, b and c by each of the tested algorithms.



Similarly, the smoothing parameters used by the ES method were
found using a grid search. O-ARMA was implemented according
to [1]. The Exponentron’s initial parameters, θ0, were set to the least
squares regression parameters calculated based on the training data
as described in [32].

The prediction models were tested over the test set time series.
Overall, Exponentron significantly outperforms each of the tested
baseline models using univariate ANOVA with the prediction method
as the independent factor and the prediction mean absolute error as
the dependent variable, p < 0.05. An illustration of the predicted val-
ues made by the Exponentron and the ARMA model is presented in
Figure 1.

Figure 1: All time series were sampled from the confined space be-
tween the upper and lower bounds. The green line is one of the tested
time series (represented by a = 79, b = 20, c = 0.15) and the purple
and light blue lines are the predictions made by the Exponentron and
ARMA, respectively.

This synthetic experiment demonstrates the advantage of the Ex-
ponentron in exponential decay time series prediction. We now turn
to investigate the Exponentron’s advantages using two real-world
data sets.

4.2 Predicting Desired Climate Changes in a Car’s
Interior

4.2.1 Data Collection

The cabin temperature time series is (s0, s1, . . . , sT ) where s0 is the
initial cabin temperature when a driver turns the CCS on, and sj is
the cabin temperature k seconds after sj−1. In our setting, k was set
to 15 seconds.6 A driver’s preferred cabin temperature time series is
(s∗0, s

∗
1, . . .) where s∗0 = s0 and s∗i is the desired cabin temperature

at time frame i. A cabin temperature is said to be steady if in a period
of 1 minute the driver does not change the CCS features and the cabin
temperature does not change more than ε. In our setting, ε was set to
0.1◦C.7 We focus on the task of predicting s∗i given (s∗0, . . . , s

∗
i−1)

until a steady cabin temperature has been reached.
We recruited 28 drivers, ranging in age from 25 to 57 (average of

35), 22 males and 6 females. Each subject was asked to enter a car,
which was parked in a garage, in order to experience the environmen-
tal conditions – temperatures ranging from 21◦C to 31◦C, averaging
27◦C. Each subject was presented with a newly designed graphical

6 A time interval of 15 seconds was chosen to allow sufficient time for our
thermometer to adapt to the changing temperature inside the car. The ther-
mometer specification states that it takes up to 15 seconds for the ther-
mometer to adapt to its environment.

7 The inaccuracy interval of our thermometer.

interface presented on a tablet which we call the natural interface.
The natural interface presents natural terms such as “Too cold”, “Too
hot” and “Noisy”, which are unavailable in most CCSs. Each subject
was instructed to interact with the system, such that after any button
was pressed the subject had to manually change the features of the
CCS using the car’s standard interface with the help of our research
assistant. Namely, the natural interface did not have any functionality
behind it at this point. The session stopped once the cabin tempera-
ture of the car was steady. While in the car the subject was given a
cell phone with a driving simulator “Bus Simulator 3D”8 to be played
while the experiment was conducted. The motivation was to set the
conditions similar to regular driving conditions and give the subjects
something to do. Unfortunately, due to insurance reasons, we could
not conduct the study while subjects were actually driving.9 The sub-
ject was then asked to exit the car for a period of 10 minutes while
the car’s doors were left open in order to simulate the initial condi-
tions. Note that the subject could choose to click on any button at any
given moment, thereby changing the CCS (manually).

During the session, the internal cabin temperature of the car was
recorded using a state-of-the-art thermometer that we placed between
the driver’s and the front passenger’s seats. The temperature was
measured once every 15 seconds (again, to allow sufficient time for
our thermometer to adapt).

Overall, 56 time series were collected. The shortest time series
consisted of 6 data points whereas the longest consisted of 26 data
points (mean of 13).

4.2.2 Analysis

The Exponentron algorithm, alongside the four baseline models de-
scribed in Section 2, was evaluated based on the collected data.

The baseline models were trained and evaluated using a one-left-
out methodology. Namely, we took out one series at a time from the
data set and used the remaining series as training data. All four mod-
els were trained as described in Section 4.1.

Note that the Exponentron algorithm and O-ARMA do not ne-
cessitate any training prior to deployment, but instead require an ini-
tialization of the parameters (θ0 in Algorithm 1). Nevertheless, we
chose to set the initial parameters to the least squares regression pa-
rameters calculated based on the training data using a one-left-out
methodology as described in [32]. We also examined the initializa-
tion of the Exponentron’s parameters using only a subset of the train-
ing data. Surprisingly, using any single time series from the training
data to determine the Exponentron’s initial parameters resulted in a
less than 10% decrease in the Exponentron’s accuracy compared to
using all of the training data.

The Exponentron’s mean absolute error was found to be
0.13◦C per value in the time series. The Exponentron’s predictions
are 28% more accurate as compared to the best tested baseline model,
O-ARMA, which yields a 0.18◦C mean absolute error. Table 1 pro-
vides a summary of the tested models’ prediction errors.

Overall, Exponentron significantly outperforms each of the tested
baseline models using univariate ANOVA with the prediction method
as the independent factor and the prediction mean absolute error as
the dependent variable, p < 0.05.

8 Available free at Google Play store.
9 “Bus Simulator 3D” was also used in previous human-CCS interaction stud-

ies in order to simulate driving conditions [5].



Method
Mean Absolute Error (per

15 seconds)
AR(1) 0.21

ARMA(1, 1) 0.2
ES(1, 0) 0.24

O-ARMA(1, 1) 0.18
Exponentron 0.13

Table 1: Prediction of the desired interior temperature of the car.
Numbers indicate the mean absolute error made by each prediction
method per 15 second frame.

4.3 Inbound Calls in a Real-World Call Center
4.3.1 Real-World Call Center – Secondary Data

We use data that was collected and analyzed in [21]. The data ac-
counts for all inbound calls arriving at the small call center of a bank
in 1999 [17]. On weekdays the center is open from 7am to midnight
(17 hours) and provides service to over 2,000 callers (on average).
We focus on the 16:00-24:00 (8 hours) time frame, in which an aver-
age of approximately 750 calls arrive at the call center in an assumed
exponential decay manner.

Following the original analysis procedure, we processed the data
such that all national holidays were removed and each of the daily
recordings was translated into a time series. For this evaluation we
used a time series of the form (c17, c18, . . . , c24) where ci is the
number of arriving calls during the (i − 1)th hour of the day. For
example, all calls arriving between 17:00 and 18:00 will count as
c18.

Overall, 222 time series were constructed. Each time series con-
sists of 8 data points.

4.3.2 Analysis

The Exponentron algorithm, alongside the baseline models described
in Section 2, was evaluated using the same procedure as described in
Section 4.2.2. Again, we noticed that using any single time series
from the training data to determine the Exponentron’s initial param-
eters resulted in a less than 15% decrease in the Exponentron’s accu-
racy compared to using the entire training data.

At each time frame of one hour the Exponentron’s mean absolute
error was found to be 5.8 calls. The Exponentron’s predictions are
41% more accurate than the best tested baseline model, ARMA,
which yields a mean absolute error of 9.8 calls. Table 2 provides a
summary of the tested models’ prediction errors.

Method
Mean Absolute Error

(hourly)
AR(1) 10.2

ARMA(1, 1) 9.8
ES(0.9, 1) 13.7

O-ARMA(1, 1) 9.9
Exponentron 5.8

Table 2: Prediction of call arrivals in a real-world call center. Num-
bers indicate the mean absolute error made by each prediction
method.

Figure 2 demonstrates the predictions provided by the Exponen-
tron and ARMA(1, 1) for the number of arriving calls per hour dur-
ing the evening of February 8th, 1999.

Overall, Exponentron significantly outperforms each of the tested
baseline models using pairwise t-tests (p < 0.05).

Figure 2: The prediction of inbound calls made by the ARMA and
Exponentron models for the evening of 8/2/1999.

5 The Exponentron-Based NICE Agent
5.1 The Agent-Human Interaction Challenge
In this section we focus on an agent-human interaction challenge in
Climate Control Systems (CCSs). We aim to automatically adjust
the CCS features (e.g, fan speed) in order to provide comfortable
settings for the user. Specifically, we address a situation in which a
driver enters a hot vehicle and the agent’s goal is to automatically set
and adjust the car’s CCS features throughout the ride to the driver’s
satisfaction.

The agent’s main goal is to bring about the driver’s desired cabin
setting in the car, namely, the appropriate interior cabin temperature
and other CCS features. Reaching the target cabin settings is not in-
stantaneous, and may take time and adjustment of the CCS features.

In an interview-based preliminary experiment we conducted with
18 drivers, we noticed that the drivers’ satisfaction from their CCS is
affected not only by the target cabin setting of the car but, and even
more importantly, by the cabin setting endured during the adjustment
process. Furthermore, we observed that people have different prefer-
ences for both of the above. However, their preferences during the
adjustment process exhibit similar exponential decay tendencies. For
example, Alice’s target interior cabin temperature is 21◦C and she
wishes to reach it as fast as possible (she does not mind enduring
extreme CCS settings in the process). Bob, on the other hand, wants
to reach 19◦C but refrains from settings in which the fan speed is
higher than 3 and thus prefers milder adjustments. However, both
prefer that the interior temperature decrease exponentially.

5.2 Background
Recent evidence suggests that drivers’ current user experience of-
ten does not meet drivers’ wishes, making many drivers desire more
natural car interfaces [19, 27]. For that purpose, some intelligent
systems use drivers’ observed behavior to automatically elicit the
drivers’ state or goals [11]. For example, in [29, 30], the authors have
shown that learning drivers’ behavior can improve the performance
of the adaptive cruise control system to drivers’ satisfaction. Others
offer more expressive interfaces that are more natural for the driver to
use and understand [18, 26]. The most relevant works within the con-
text of CCS are [5, 28, 4], in which the authors try to elicit drivers’
climate control preferences in order to provide advice to the driver
that will help him reduce the climate system’s energy consumption.
The authors did not account for the possibility of the agent automat-
ically changing the CCS settings nor did they allow for natural input
from the driver.



The thermal comfort of human subjects has been exhaustively in-
vestigated over the last four decades, resulting in the ISO 7730 stan-
dard10 [2]. The standard, which was also found to be applicable in car
cabins, is aimed at predicting the degree of thermal comfort of an av-
erage person exposed to a certain steady environment (see [10] for a
recent survey). Unfortunately, the standard does not provide answers
on how a system should bring about a comfortable state.

Furthermore, the standard relies on the assumption that user-
specific parameters are available such as thermal sensitivity, cloth-
ing and activity level. Despite recent attempts to personalize thermal
comfort models [3], state-of-the-art thermal comfort models do not
provide personalized or adaptive thermal comfort predictions.

Using the Exponentron algorithm, we will next describe a com-
peting approach which does not necessitate the identification of user-
specific characteristics prior to its deployment.

5.3 The NICE Agent Design

The NICE agent’s goal is to minimize the number of interactions
needed by a driver to reach her desired comfort state and maximize
the driver’s satisfaction from the interaction process.

The agent implements the Exponentron algorithm (Algorithm 1)
in order to predict the driver’s desired climate changes during the
ride and thereby change the CCS setting.

During the process, the driver may provide feedback to the agent
using natural comments, such as “Too cold” or “Too hot”, using the
natural interface described in Section 4.2. These comments, in turn,
are used to adapt the Exponentron’s predictions, as we will soon de-
scribe.

A CCS setting is a tuple ω =< temp, f, d >, where temp is
the set temperature (an integer between 16 and 35 degrees C), f is
the fan strength (an integer between 1 and 8) and d is the air delivery
(1=face only, 2=face and feet, 3=feet). Two additional parameters are
e, which is the external temperature (the temperature outside the car),
and i, which is the internal cabin temperature. At time t, we denoted
the CCS setting as ωt, the external temperature as et and the internal
cabin temperature as it.

The NICE agent uses 3 models; a CCS model, a human driver
model and an Exponentron prediction model. The construction of
these models is described later in this section. The NICE agent uses
the three models in the following manner: At time t, the NICE agent
predicts the driver’s desired cabin temperature for the next time
frame, ît+1, using the Exponentron prediction model. Given ît+1,
the agent calls the CCS model and receives and implements a CCS
setting ωt which is predicted to bring about ît+1. Given that no com-
ment is presented by the driver during the next 15 seconds, the agent
assumes that the Exponentron’s prediction, ît+1, and the CCS set-
ting ωt suit the driver’s preferences and the process is repeated. The
com signal takes the value of 0 since no comment was given by the
driver. The driver can interrupt the above process (which otherwise
will continue throughout the entire ride) by providing feedback. If
a comment (c) is given within 15 seconds of implementing ωt, then
the agent uses the human driver model to predict the driver’s de-
sired CCS setting, ω̂t, and implements it instantaneously in the CCS.
Then, the system maintains the new CCS setting until 15 seconds
pass in which no further feedback is provided by the driver. Namely,
if the driver provides another comment within 15 seconds of his last
comment, the human driver’s model is called on once again and the
15-second timer is re-set. Once 15 seconds pass without further com-

10 Also known as Fanger’s Predicted Mean Vote (PMV) criteria.

ments, the resulting cabin temperature is used to update the Expo-
nentron’s parameters. To that end, the com signal is set to 1. That is,
the Exponentron’s parameters can only be adjusted when the driver
interacts with the agent. Figure 3 illustrates the agent’s algorithmic
scheme.

5.3.1 The CCS Model

Recall that the CCS model is used to determine which CCS setting ωt

will bring about the desired change in the internal cabin temperature
over a course of 15 seconds. For that purpose, the model receives it,
ωt−1 and ît+1.

In order to train the CCS model, thirty distinct CCS settings were
selected such that their set temperature, temp, was lower than the ini-
tial cabin temperature, i0, at the time of the experiment. This prop-
erty is required to enforce a cooling condition, which we examine
in this study. We counter-balanced the selected CCS settings to ac-
count for the different possible ωs; namely, different temp, f and
d values. Each CCS setting was manually configured to the CCS at
the beginning of the trial. The cabin temperature, i, and the external
temperature, e, were recorded every 15 seconds until the car’s cabin
temperature reached a steady state. Between every 2 consecutive ex-
periments the car was turned off and the car’s doors were left open
for 10 minutes so as to simulate the initial conditions.

From the 30 trials we conducted over the course of 3 days, we
recorded 657 measurements. Each of the measurements corresponds
to a change in the car’s cabin temperature, ij+1 − ij , given ej , and
the CCS setting ω used in the trial. We fit the data using a simple
linear regression model which yields the best fit out of the tested
models11. Namely, we constructed a model which, given it and ω,
predicts it+1. To find a ω which is most likely to bring about the
desired change, we iterate through all possible ωs. In the case of a
tie, where more than a single CCS setting is expected to change the
cabin temperature in the desired manner, the model outputs one of
the CCS settings which is most similar to the previous CCS setting,
ωt−1. Recall that a CCS setting is a vector< temp, f, d >, therefore
similarity is easily defined. In this work we used the cosine similarity.

Using cross-validation, the learned model yields a mean absolute
error of 0.15◦C and a strong correlation coefficient of 0.9. In com-
parison, using the last cabin temperature change, ∆j = ij − ij−1, as
an estimation for the next cabin temperature, îj+1 = ij + ∆j , yields
a mean absolute error of 0.51 and a correlation coefficient of 0.3.

5.3.2 The Human Driver Model

Given a driver’s comment, denoted c0, the human driver model is
used to predict the driver’s desired CCS settings. The model is based
on multi-dimensional regression: At time t when a comment (de-
noted as c) is given (i.e, a button is pressed), the model predicts the
desired CCS setting ω̂t, given ωt, et, it, c0 and the last 2 previously
provided comments, denoted c1, c2.

In order to train the human driver model, we used the data
collected in Section 4.2. Recall that in our experiment drivers
were asked to interact with the newly designed natural interface
while changing the CCS settings manually. The experiment record-
ings were translated into more than 100 vectors of the form <

11 We also examined other, more sophisticated modeling, for example using
SVM with kernels. These models did not provide a significant improve-
ment in prediction accuracy.



Figure 3: The NICE agent’s algorithmic scheme.

ωt, et, it, c0, c1, c2 > as described above, with the drivers’ manu-
ally set CCS setting, ω′, as their label. Each session resulted in a
different number of vectors, depending on the session’s length.

The multi-dimensional regression consists of 3 linear regression
models, each predicting a different component of the desired CCS
setting ω′ =< temp, f, d >. Using cross-validation, the prediction
model yields a mean absolute error of 0.9 in predicting the next fan
speed, f , and a mean absolute error of 1.02◦C for the next set tem-
perature, t. A high 97% accuracy in predicting the desired air deliv-
ery, d, was also recorded.

5.3.3 The Exponentron Prediction Model

The Exponentron prediction model implements the Exponentron al-
gorithm (Algorithm 1). The Exponentron is trained with the same
procedure used in Section 4.2. The model receives an additional in-
put bit com, signaling whether the driver provided a comment in the
last time frame. If and only if the com bit is 1, then an adaptation of
the model parameters is executed using the current cabin temperature
it.

The θ learned parameters represent the driver’s preferences.
Specifically, the parameter a represents the driver’s intended steady
state cabin temperature and the parameters b and c represent the way
in which the driver wishes to bring about the desired cabin tempera-
ture.

5.4 Evaluation
5.4.1 Experimental Methodology

We recruited 24 drivers who did not participate in the data collection
phase described in Section 4.2, with an equal number of males and
females, ranging in age from 25 to 60 (average of 34). In a similar
protocol to that described in Section 4.2, each subject was asked to
enter a car that was parked in a garage, recreating the environmental
conditions with temperatures ranging from 32◦C to 37◦C, averag-
ing 35◦C. Each subject participated in two consecutive trials. In each
trial the subject was equipped with either the Technical CCS or the
NICE agent. The technical CCS presented buttons similar to those

available in the common CCS, with which the driver can explicitly
select her desired CCS setting. Namely, it presented two scales: one
for the fan speed and the other for the temperature. The driver could
change the setting by selecting her preferred fan speed and temper-
ature on the designated scales. Namely, in a single interaction, the
driver could change the CCS setting completely. Note that no intelli-
gent agent was implemented to support it. The NICE agent uses the
natural interface which is the same interface as described in Section
4.2. In both conditions, the GUI was presented on a tablet covering
the car’s central stack in order to avoid biasing the results. Each sub-
ject was instructed to interact with the system as she saw fit by using
the buttons available in the presented interface. While in the car the
subject was given a cell phone with a driving simulator “Bus Simu-
lator 3D” to be played while the experiment was conducted.

Once the cabin temperature, i, reached a steady state, the session
came to an end. Each session lasted 2-6 minutes (mean of 4 minutes).
After the session ended, the driver was asked to exit the car for a pe-
riod of 10 minutes while the car’s doors were left open in order to
simulate initial conditions. The process was repeated once more un-
der the condition that was not examined in the first session. Subjects
were counter-balanced as to which condition they experienced first
in order to maintain the scientific integrity of the results.

During each session we recorded the number of interactions
needed by the driver in order to reach her desired steady state. At
the end of the experiment, drivers were asked to fill out a post-
experiment questionnaire aimed at evaluating their satisfaction from
the examined interfaces.

5.4.2 Results and Analysis

We first analyze the number of interactions needed by drivers to reach
their desired steady states under the examined conditions. Then we
summarize the subjects’ answers in the post-experiment question-
naire. Note that the technical CCS is the current state-of-the-art CCS
and acts as the benchmark in the following analysis.

The NICE agent required a significantly lower number of inter-
actions from the driver compared to the technical CCS using t-test
(p < 0.05). The NICE agent averaged 5.35 interactions carried out



by the driver until a steady state was reached while the technical
CCS averaged 6.54 interactions. Out of the 24 subjects, only 8 sub-
jects required more interactions while equipped with the NICE agent
compared to their benchmark score. See Figure 4 for a summary.

NICE agent Technical CCS
3

4

5

6

7

8

#I
nt

er
ac

tio
ns

Figure 4: Average number of interactions per interface; (the lower the
better). Error bars indicate standard errors.

Recall that the NICE agent’s goal is to automatically set and adjust
the car’s CCS setting throughout the ride to the driver’s satisfaction.
In order to assess the driver’s satisfaction from the interaction, at
the end of the experiment we asked each driver which, if any, of
the tested conditions she would want to see available in her car. Out
of the 24 subjects, 13 subjects stated that they want to use the NICE
agent, while 10 subjects stated their preference for the technical CCS.
We also asked subjects to state their satisfaction level from the tested
conditions. Subjects reported an average score of 6.2 out of 10 when
asked for their satisfaction from the technical CCS. This result is
significantly lower, using t-test (p < 0.05), compared to the NICE
agent which recorded an average score of 7.2 out of 10.

To summarize, the results indicate that the NICE agent is able
to reduce the number of interactions needed by drivers in order to
achieve their desired comfort states (6.54 vs. 5.35) to the drivers’
satisfaction, as portrayed in the increase of the subjects’ subjective
satisfaction (7.2 vs. 6.2) and the subjects’ preferred interaction mode
(13 vs. 10).

6 Conclusions
In this paper we presented the Exponentron algorithm for the online
prediction of assumed exponential decay time series. The Exponen-
tron algorithm was evaluated both theoretically and empirically; the-
oretically we show a regret bound that compares our algorithm to the
best batch algorithm, which is given the entire time series in advance.
Empirically, the Exponentron was evaluated in synthetic and real-
world prediction tasks in which it significantly outperformed classic
time series prediction methods. Furthermore, we demonstrated the
Exponentron algorithm’s benefit using the novel NICE agent, which
significantly enhances the driver-automotive CCS interaction process
compared to standard CCS control.

From an applicative perspective, our proposed methodology is not
restricted to CCS-based agents. For example, in the development
of personal assistance agents, the prediction of human forgetfulness
may be beneficial. Specifically, an agent may need to predict the time
it would take for its user to forget an important piece of information
and provide a reminder for it. The forgetting curve [13] predicts the
decline of memory retention in time and is assumed to decay expo-
nentially for all people, though significant differences between indi-
viduals may be observed. Significant differences over time may also
be presented for any specific person, which would necessitate online

adaptation. In a similar fashion to the natural interface, which was
presented in Section 4.2, a user can express her feedback in a natural
manner, e.g., “Remind me later”.

Future work will include the investigation of other time-dependent
phenomena that are likely to adhere to an a priori assumed functional
behavior. For example, we will tackle the challenge of automatically
adjusting exercise levels in online tutoring systems. The progress in
which new skills are learned is commonly assumed to follow a sig-
moid curve, with some measure of skill on the Y axis and the number
of trials on the X-axis [23]. In the spirit of the presented work and
the NICE agent’s design, the agent will be able to adjust, online, the
exercise level according to its estimation of the student’s learning
curve. The student will be able to express her feedback in a natural
manner, for example “The exercises are too difficult”, and thus make
the agent adapt its behavior.

ACKNOWLEDGEMENTS
We would like to thank the ERC (grant #267523) for their support in
this research.

REFERENCES
[1] Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir, ‘Online

learning for time series prediction’, in Proc. of the Conference on
Learning Theory, pp. 172–184, (2013).

[2] ASHRAE, ‘Standard 55-2013. thermal environmental conditions for
human occupancy. ashrae’, American Society of Heating, Refrigerating
and Air-Conditioning Engineering, (2013).

[3] Frederik Auffenberg, Sebastian Stein, and Alex Rogers, ‘A personalised
thermal comfort model using a bayesian network’, in Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence
(IJCAI), (2015).

[4] Amos Azaria, Yaakov Gal, Sarit Kraus, and Claudia V Goldman,
‘Strategic advice provision in repeated human-agent interactions’, Au-
tonomous Agents and Multi-Agent Systems, 30(1), 4–29, (2016).

[5] Amos Azaria, Ariel Rosenfeld, Sarit Kraus, Claudia V Goldman, and
Omer Tsimhoni, ‘Advice provision for energy saving in an automobile
climate-control system’, AI Magazine, 36(3), 61–73, (2015).

[6] José M Bernardo and Adrian FM Smith. Bayesian theory, 2001.
[7] Dimitri P Bertsekas, ‘Nonlinear programming’, (1999).
[8] Léon Bottou, ‘Stochastic gradient tricks’, Neural Networks, Tricks of

the Trade, Reloaded, 430–445, (2012).
[9] George Box, Gwilym M. Jenkins, and Gregory C. Reinsel, Time Series

Analysis: Forecasting and Control, Prentice-Hall, 1994.
[10] Cristiana Croitoru, Ilinca Nastase, Florin Bode, Amina Meslem, and

Angel Dogeanu, ‘Thermal comfort models for indoor spaces and ve-
hiclescurrent capabilities and future perspectives’, Renewable and Sus-
tainable Energy Reviews, 44, 304–318, (2015).

[11] Sergio Damiani, Enrica Deregibus, and Luisa Andreone, ‘Driver-
vehicle interfaces and interaction: where are they going?’, European
transport research review, 1(2), 87–96, (2009).

[12] Norman Richard Draper, Harry Smith, and Elizabeth Pownell, Applied
regression analysis, volume 3, Wiley New York, 1966.

[13] Hermann Ebbinghaus, Memory: A contribution to experimental psy-
chology, number 3, University Microfilms, 1913.

[14] Noah Gans, Ger Koole, and Avishai Mandelbaum, ‘Telephone call cen-
ters: Tutorial, review, and research prospects’, Manufacturing & Ser-
vice Operations Management, 5(2), 79–141, (2003).

[15] Everette S Gardner, ‘Exponential smoothing: The state of the art’, Jour-
nal of forecasting, 4(1), 1–28, (1985).

[16] Paul Goodwin, ‘The holt-winters approach to exponential smoothing:
50 years old and going strong’, Foresight: The International Journal of
Applied Forecasting, (19), 30–33, (2010).

[17] I. Guedj and A. Mandelbaum, ‘Call center data’, Technical report,
Technion, Israel Institute of Technology, (2000).

[18] Jee Yeon Hwang, Kent Larson, Ryan Chin, and Henry Holtzman, ‘Ex-
pressive driver-vehicle interface design’, in Proceedings of the 2011
Conference on Designing Pleasurable Products and Interfaces, p. 19.
ACM, (2011).



[19] Li Li, Ding Wen, Nan-Ning Zheng, and Lin-Cheng Shen, ‘Cognitive
cars: A new frontier for adas research’, Intelligent Transportation Sys-
tems, IEEE Transactions on, 13(1), 395–407, (2012).

[20] Chenghao Liu, Steven CH Hoi, Peilin Zhao, and Jianling Sun, ‘Online
arima algorithms for time series prediction’, in Thirtieth AAAI Confer-
ence on Artificial Intelligence, (2016).

[21] Avishay Mandelbaum, Anat Sakov, and Sergey Zeltyn, ‘Empirical anal-
ysis of a telephone call center’, Technical report, Technion, Israel Insti-
tute of Technology, (2001).

[22] Luis Moreira-Matias, Joao Gama, Michel Ferreira, João Mendes-
Moreira, and Luis Damas, ‘Predicting taxi–passenger demand using
streaming data’, Intelligent Transportation Systems, IEEE Transactions
on, 14(3), 1393–1402, (2013).

[23] Jaap MJ Murre, ‘S-shaped learning curves’, Psychonomic bulletin &
review, 21(2), 344–356, (2014).

[24] Isaac Newton, Scala graduum caloris: calorum descriptiones & signa,
Royal Society of London, 1701.

[25] Eoin O’Mahony and David B Shmoys, ‘Data analysis and optimization
for (citi) bike sharing’, in Twenty-Ninth AAAI Conference on Artificial
Intelligence, (2015).

[26] Ioannis Politis, Stephen Brewster, and Frank Pollick, ‘To beep or not
to beep?: Comparing abstract versus language-based multimodal driver
displays’, in Proceedings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems, pp. 3971–3980. ACM, (2015).

[27] Simon Ramm, Joseph Giacomin, Duncan Robertson, and Alessio Mal-
izia, ‘A first approach to understanding and measuring naturalness in
driver-car interaction’, in Proceedings of the 6th International Confer-
ence on Automotive User Interfaces and Interactive Vehicular Applica-
tions, pp. 1–10. ACM, (2014).

[28] Ariel Rosenfeld, Amos Azaria, Sarit Kraus, Claudia V Goldman, and
Omer Tsimhoni, ‘Adaptive advice in automobile climate control sys-
tems’, in Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 543–551. International
Foundation for Autonomous Agents and Multiagent Systems, (2015).

[29] Avi Rosenfeld, Zevi Bareket, Claudia V Goldman, Sarit Kraus, David J
LeBlanc, and Omer Tsimhoni, ‘Towards adapting cars to their drivers’,
AI Magazine, 33(4), 46, (2012).

[30] Avi Rosenfeld, Zevi Bareket, Claudia V Goldman, David J LeBlanc,
and Omer Tsimhoni, ‘Learning drivers behavior to improve adaptive
cruise control’, Journal of Intelligent Transportation Systems, 19(1),
18–31, (2015).

[31] Avraham Shvartzon, Amos Azaria, Sarit Kraus, Claudia V Goldman,
Joachim Meyer, and Omer Tsimhoni, ‘Personalized alert agent for op-
timal user performance’, in Proceedings of the 30th International Con-
ference on Artificial Intelligence (AAAI). AAAI, (2016).

[32] Gordon K Smyth, ‘Nonlinear regression’, Encyclopedia of environ-
metrics, (2002).

[33] Martin Zinkevich, ‘Online convex programming and generalized in-
finitesimal gradient ascent’, (2003).


	Introduction
	Time Series Preliminaries
	The Exponentron Algorithm
	Exponentron Evaluation
	Synthetic Data Prediction
	Predicting Desired Climate Changes in a Car's Interior
	Data Collection
	Analysis

	Inbound Calls in a Real-World Call Center
	Real-World Call Center – Secondary Data
	Analysis


	The Exponentron-Based NICE Agent 
	The Agent-Human Interaction Challenge
	Background
	The NICE Agent Design
	The CCS Model
	The Human Driver Model
	The Exponentron Prediction Model

	Evaluation
	Experimental Methodology
	Results and Analysis


	Conclusions

